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1. Introduction

The estimation and use of continuous time dynamic models in macroeconomics

and finance has matured into a well-established area of research and empirical practice.

Early work on the estimation of continuous time models focused on systems of linear

stochastic differential equations (SDEs) and a number of methods have been estab-

lished for the estimation of such models using data observed at discrete time intervals.

Prominent among these methods are Kalman filtering techniques based on appropri-

ate state space forms (Harvey and Stock, 1985; Zadrozny, 1988), frequency domain

approaches based on Fourier transforms (Robinson, 1976, 1993), and time domain

methods based on an exact discrete time representation (Phillips, 1972; Bergstrom,

1983, 1985). In empirical applications Christiano, Eichenbaum and Marshall (1991),

for example, used a frequency domain approximation to the Gaussian likelihood func-

tion in order to estimate their continuous time model of consumption behaviour based

on a representative agent’s first-order optimisation conditions, while Bergstrom and

Nowman (2007) based their estimation of an eighteen-equation non-linear macroe-

conometric model of the United Kingdom on an exact discrete time representation

corresponding to the underlying system of linearised SDEs.

A limitation of the above methods is that they are predominantly constructed

for linear dynamic models.1 Although the model of Bergstrom and Nowman (2007)

consists of eighteen mixed first- and second-order non-linear SDEs the model was

nevertheless linearised around its steady state prior to its estimation using an exact

discrete model (EDM) corresponding to the linearised system. An EDM has the ad-

vantage that observations generated by the continuous time system satisfy the EDM

without any approximation or interpolation errors. An alternative approach to the

estimation of non-linear continuous time systems is to evaluate the likelihood func-

tion based on a numerical solution of the non-linear SDEs (Bailey, Hall and Phillips,

1987; Wymer, 1993). Non-linearities are, however, an important feature of many of

the models of interest in macroeconomics and finance, and such non-linearities can

influence dynamic features such as the rate of adjustment and, obviously, the steady

state solution itself. The standard practice of linearising the system does not provide

an adequate solution since non-linearities play a pivotal role in the system’s reaction

to shocks (Brunnermeier and Sannikov, 2014). Another drawback of linearisation is

that the approximation errors that enter into the likelihood function can grow with

the sample size (Fernandez-Villaverde, Rubio-Ramirez and Santos, 2006).

The present paper develops a method that tackles the twin problems of non-

1An exception is Robinson (1976) whose model is much more general than a linear system but
has the drawbacks that it is not applicable to closed systems and also imposes a restrictive aliasing
constraint on the spectral densities of the exogenous variables.
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linearity and temporal aggregation that provide challenges to the estimation of con-

tinuous time dynamic stochastic models from discretely sampled data. We base our

estimation method on what we call the locally exact discrete model (LEDM), a non-

linear discrete time dynamic model that results from the application of a local lin-

earisation principle to the drift term originally proposed by Shoji and Ozaki (1997,

1998). Our data generating process (DGP) is formulated as a non-linear system of

SDEs of the type that are frequently used in macroeconomics and finance, includ-

ing dynamic stochastic general equilibrium (DSGE) models as well as more standard

macro-dynamic models. We obtain the precise form of the LEDM, along with the

covariance properties of the discrete time error terms, in three important cases of data

sampling that are of empirical relevance: (i) stock data; (ii) flow data; and (iii) mixed

stock and flow data. The last case is the most pertinent for macroeconomic models in

which the variables are typically a mixture of stocks and flows. We include the other

two cases, however, partly to help motivate ideas in the simplest setting of stock data,

and also out of a desire for completeness. Although the LEDM is not the globally

exact discrete time model, it can nevertheless be regarded in practice as a conditional

Gaussian approximation of the DGP, possessing several advantages:

1. Alternative estimation methods – both classical and Bayesian – can be built on

the basis of the LEDM. In our simulation study, for example, we implement a

Bayesian estimation algorithm that is especially suited to the estimation of the

deep structural parameters of the models.

2. The estimation algorithm is computationally efficient for medium size systems

of SDEs of the type usually encountered in macroeconometric modelling. Al-

ternative methods of solving, either numerically or analytically, the Kolmogorov

partial differential equations that characterise the transition densities are rather

challenging, especially for large systems.

3. An important advantage of the LEDM is that it nests the EDM when the data

generating process is actually linear.

4. As in the exact discretisation of linear models, a useful by-product of our method

is that it yields a non-linear model that has vector autoregressive (VAR) charac-

teristics, which can also be useful as a basis for other purposes, such as hypothesis

testing, forecasting, and Monte Carlo studies.

The LEDM method therefore provides a computationally efficient degree of general-

ity and flexibility in non-linear continuous time modelling that extends the range of

possibilities beyond purely linear models.
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We derive the LEDM for each of the three data sampling schemes allowing for

a general sampling interval of length h. This enables us to explore the order of the

LEDM approximation error as the sampling frequency increases i.e. as h becomes

smaller. We do this by considering a local strong measure of the approximation error

and show that it is O(h) for stock and mixed data and O(h2) with flow data. Use of

a general sampling interval also enables further extensions to mixed frequency data

of the type considered in continuous time systems by Chambers (2016) although such

an extension lies considerably beyond the scope of the present paper.

The plan of the paper is as follows. In the next section the continuous time model

is defined along with a set of assumptions appropriate for the case of stock variables.

The precise form of the LEDM is presented in Theorem 1 which also contains the

covariance properties of the discrete time disturbance vectors. The properties of the

discrete time disturbances are then utilised in constructing the likelihood function

based on the Gaussian properties that feed through from the disturbances in the

continuous time model which is driven by a vector of Wiener processes. Under mild

additional assumptions the local strong approximation error is shown to be O(h) as

h → 0 (Proposition 1). Section 3 is devoted to deriving the LEDM in the cases of pure

flow data (Theorem 2) and a mixture of stocks and flows (Theorem 3), the latter being

the most relevant for the majority of empirical applications. The Gaussian likelihood

functions are derived in each case based on the conditional first-order moving average

properties of the discrete time disturbances and the local strong approximation error

is shown to be O(h2) in the case of flow sampling (Proposition 2). The presence of

stocks in the mixed sampling scenario suggests that the approximation error is O(h)

in that case.

Section 4 presents the results of a simulation study based on two different DGPs.

Both DGPs are bivariate and non-linear in nature but one contains only stock variables

while the other consists of a stock and a flow. The results demonstrate that our

LEDM-based method performs well in finite samples. Some concluding comments are

presented in section 5 and the proofs of the main results contained in the paper are

provided in the Appendix.

In terms of notation, In denotes an n×n identity matrix, ∥A∥ =
√
tr(AA′) denotes

the Euclidean norm of the matrix A, tr{A} and |A| denote the trace and determinant

of a square matrix A, respectively, and the matrix exponential is defined by

eA =
∞∑
j=0

1

j!
Aj,

also for a square matrix A. The notation ⌊x⌋ denotes the integer part of x while a ∝ b

denotes that a is proportional to b.
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2. The model and the LEDM with stock sampling

Our continuous time model concerns an n× 1 vector of observable variables, y(t),

that is related to an n× 1 vector of state variables, x(t), neither of which is observed

as a continuous record. The model itself consists of the following two equations:

Measurement equation: y(t) = γ
(
x(t)

)
, t > 0; (1)

Transition equation: dx(t) = µ
(
x(t); θ

)
dt+ Σ

(
x(t); θ

)
dW (t), t > 0. (2)

In (1), γ(x) is a possibly non-linear function relating the observable variables to the

state vector, while in (2) µ(x; θ) and Σ(x; θ) represent a drift vector and a diffusion

matrix, respectively, θ is a p× 1 vector of unknown parameters, and W (t) is an n× 1

Wiener process (or standard Brownian motion) defined on a probability space (Ω,F,P)
with filtration (Ft)t≥0 which satisfies E

(
dW (t)

)
= 0 and E

(
dW (t)dW (t)′

)
= Indt. The

functions γ(·), µ(·) and Σ(·) are all assumed to be known – we do not consider cases

where these are unknown and need to be estimated non-parametrically. In addition

µ(·) and Σ(·) are assumed to be time invariant; the analysis can be extended to time

varying diffusions, however, by incorporating time as an extra state variable, although

we do not explicitly do so here.

In the standard case of a constant diffusion term the transformation in the mea-

surement equation has the form γ
(
x(t)

)
= Σ− 1

2x(t), where Σ is a positive definite

symmetric matrix of constants independent of the state variables x(t). For the rest of

the paper, however, it is useful to work with the more general case where the diffusion

term is state dependent as in (2). We therefore assume that the observable variables

of interest satisfy a system of n non-linear transformations that act instantaneously

on a state vector generated by a system of n first-order non-linear SDEs. Note that, in

the case where y(t) = x(t), the transition equation (2) represents a non-linear system

of SDEs in the vector y(t) directly. Our objective is to derive a representation – the

LEDM – in terms of the discrete time observations on y(t) that is consistent with the

underlying non-linear continuous time system.

The specification of our proposed modelling framework is completed by a sampling

equation that relates the discrete time observations to the continuous time process y(t).

We assume that the data are recorded at discrete time points h, 2h, . . . , Nh in the time

interval [0, T ], where h is the observation (or sampling) interval, T denotes the data

span and N = T/h is an integer denoting the sample size. Often in the literature the

convention h = 1 is adopted to imply an annual time interval, while h = 1/12 (1/52

or 1/250) a monthly (weekly or daily) time step, implying for most cases of practical
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importance that h ≤ 1. In this section we consider the following sampling equation:

Sampling equation (stocks): yth = y(th), t = 1, . . . , N. (3)

Stock variables therefore represent observations of the underlying continuous time

process sampled at (equispaced) points in time at intervals of length h; this assumption

will be relaxed in the next section to allow for flow and mixed stock and flow sampling.

Some additional assumptions are required on the drift and diffusion functions

in (2), as well as the measurement equation function in (1), for the validity of our

proposed method. In the sequel, to ease notation, it is sometimes convenient to

suppress explicit dependence on the parameter vector θ and also, when there is no

confusion, on the state variables.

Assumption 1. The drift function µ(x; θ) and diffusion matrix Σ(x; θ) are known,

measurable functions defined on the domains of x and θ ∈ Θ ⊂ Rp and the matrix

V (x; θ) = Σ(x; θ)Σ(x; θ)′ is positive definite for all x and θ ∈ Θ.

Assumption 2. The drift and diffusion functions satisfy, for all x, z ∈ Rn, the local

Lipschitz condition

∥µ(x)− µ(z)∥+ ∥Σ(x)− Σ(z)∥ ≤ K∥x− z∥

and the the linear growth condition2

∥µ(x)∥+ ∥Σ(x)∥ ≤ K (1 + ∥x∥) ,

for some constant K > 0.

Assumption 3. The inverse of the measurement equation function, denoted γ−1(y),

exists and is unique. Furthermore, the n× n matrix

Γ(x) =
∂γ(x)

∂x′

is of full rank for all x.

Assumption 1 is standard while Assumption 2 contains regularity conditions that

imply the existence and uniqueness of a strong solution to the system of stochastic

differential equations (2); see, inter alia, Arnold (1974, Theorem 6.2.2, p.105) and

Karatzas and Shreve (1991, Theorem 5.2.9, p.289). Aı̈t-Sahalia (2002) and Aı̈t-Sahalia

and Mykland (2004) discuss an analogous set of regularity conditions relevant for the

existence of a weak solution of univariate diffusions. The first part of Assumption

2Some authors, for example Karatzas and Shreve (1991, equation 5.2.13), write the linear growth
condition in the form ∥µ(x)∥2 + ∥Σ(x)∥2 ≤ K2

(
1 + ∥x∥2

)
.

5



3 ensures that we can express the unobservable state vector x(t) in terms of the

observable vector y(t) at certain points in the proofs of the theorems that follow, while

the second part ensures that the conditional covariance matrices of the disturbance

vectors in the LEDMs are positive definite (in conjunction with Assumption 1). The

derivation of the LEDM relies on a further assumption as follows:

Assumption 4. Define, for i = 1, . . . , n, the scalar functions fi(y) = gi(γ
−1(y)) and

n× 1 vector functions ωi(y) = hi(γ
−1(y)), where

gi(x) =

(
∂γi(x)

∂x

)′

µ(x) +
1

2
tr

{
Σ(x)′

∂2γi(x)

∂x∂x′ Σ(x)

}
,

hi(x)
′ =

(
∂γi(x)

∂x

)′

Σ(x).

Furthermore, let

Ai(y) =
∂fi(y)

∂y
, Bi(y) =

∂2fi(y)

∂y∂y′
, i = 1, . . . , n.

Then, for each t = 1, . . . , N − 1 and i = 1, . . . , n, it is assumed that

Ai

(
y(s)

)
= Ai

(
y(th)

)
≡ Ai,th,

Bi

(
y(s)

)
= Bi

(
y(th)

)
≡ Bi,th,

ωi

(
y(s)

)
= ωi

(
y(th)

)
≡ ωi,th,

 th ≤ s < th+ h.

Assumption 4 is used to ensure that the derivatives of certain functions arising

in the derivation of the LEDM remain constant over each observation interval, their

values being dependent on the observed value of y(t) at the start of the relevant

interval. A similar type of assumption was used by Nowman (1997) to capture the

evolution of stochastic volatility in a single-factor model of interest rates and by Shoji

and Ozaki (1997) in their local linearisation method for scalar SDEs. The LEDM

pertaining to discrete time stock sampling defined in (3) is given in Theorem 1 below.

Theorem 1. Let y(t) (0 < t ≤ T ) satisfy (1) and (2) and let the observations yth

(t = 1, . . . , N) satisfy (3). Then, under Assumptions 1–4, the LEDM is given by

yth+h = Θthyth +Υ1,th+hCth +Υ2,th+h∆th + ξth+h, t = 1, . . . , N − 1, (4)

where

ξth+h =

∫ th+h

th

eAth(th+h−r)ΩthdW (r)

and the matrices and vectors are defined in Table 1.
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The LEDM in Theorem 1 is in the form of a vector autoregression that contains

time-varying coefficients and conditional heteroskedasticity which arise mainly because

of the influence of the local approximations that are utilised within each sampling in-

terval. The disturbance vector ξth+h has zero mean in view of eAth(th+h−r)Ωth and

dW (r) being uncorrelated3 for r ∈ [th, th+ h). Defining Eth(·) to be the expectation

operator conditional on the filtration Fth i.e. Eth(xth+h) = E(xth+h|Fth) for a ran-

dom variable xth defined on the probability space (Ω,F,P), the conditional covariance
matrix is then given by

Mth+h|th = Eth

(
ξth+hξ

′
th+h

)
=

∫ h

0

eAthrΩthΩ
′
the

A′
thrdr.

The unconditional covariance matrix would be difficult to evaluate as it would require

the determination of the unconditional expectation

E
(
eAthrΩthΩ

′
the

A′
thr
)

in which each quantity is a complicated function of yth itself. Following Shoji and

Ozaki (1997) we proceed by treating yth as given (non-random) in these expressions

which enables the (quasi-)autocovariance structure to be derived; in this case, ξth+h

is an uncorrelated normally distributed zero mean random disturbance vector with

covariance matrix

M0,th+h =

∫ h

0

eAthrΩthΩ
′
the

A′
thrdr, (5)

the lack of serial correlation arising because the Wiener processes in ξth+h and ξth+h−jh

are uncorrelated for j ̸= 0 when yth is treated as fixed. It is straightforward to show

that M0,th+h is positive definite because the matrix exponentials are nonsingular and

Ω(x)Ω(x)′ = Γ(x)Σ(x)Σ(x)′Γ(x)′

is positive definite in view of the full rank of Γ(x) in Assumption 3 and the positive

definiteness of Σ(x)Σ(x)′ in Assumption 1.

The LEDM in Theorem 1, allied with the autocovariance properties of ξth+h de-

scribed above, provides the basis for constructing the Gaussian likelihood function

that can be used to obtain estimates of the parameters of interest. Let Y denote the

N × n matrix of observations on the stock variables, with typical row y′th, and, using

Theorem 1, let

ξth+h = yth+h −Θthyth −Υ1,th+hCth −Υ2,th+h∆th, t = 1, . . . , N − 1

3In fact, due to the normality of the increments of W (t), these quantities are also independent.
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denote the vector of disturbances in the LEDM which we treat as being uncorrelated

with covariance matrix M0,th+h defined in (5). Then the log-likelihood function is

logL(θ;Y ) = −n(N − 1)

2
log 2π − 1

2

N−1∑
t=1

log |M0,th+h| −
1

2

N−1∑
t=1

ξ′th+hM
−1
0,th+hξth+h. (6)

This is the most straightforward of the three sampling schemes to handle from a

computational viewpoint as construction of the log-likelihood function only involves

determinants and inverses of n× n matrices.

The log-likelihood function presented above can be utilised for estimation of the

parameter vector θ using either classical or Bayesian methods. In the classical case the

estimator, θ̂, is obtained as the argument that maximises the log-likelihood function

itself, whereas in the Bayesian case prior information about θ is used to construct a

posterior distribution which is maximised in order to determine θ̂. More precisely, let

p(θ) denote the prior distribution reflecting beliefs about θ; the posterior distribution

is then given by

p(θ;Y ) ∝ L(θ;Y )p(θ). (7)

The asymptotic properties of the resulting classical and Bayesian estimators can, in

principle, be derived under appropriate regularity conditions.4 In the case where y(t)

is stationary it can be expected that the resulting estimators will be asymptotically

normally distributed with convergence to the limiting distribution taking place at a

rate equal to the square root of the sample size, while when some nonstationarity

and/or cointegration is present at least some parameter estimators can be expected

to converge at the rate of the sample size to limiting distributions characterised by

functionals of Brownian motion processes.

The accuracy of the LEDM approximation based on Assumption 4 can be expected

to improve as the sampling frequency increases while in the case of linear models the

LEDM corresponds to the exact discrete model in Bergstrom (1984, Theorem 3).

This latter property can be demonstrated by observing that, when the drift term in

(2) is linear, then Cth and ∆th are zero vectors. It is also worth emphasising that,

for non-linear models, the LEDM exploits information contained in the second-order

derivatives through both Cth and ∆th.

It is of interest to investigate more fully the accuracy of the approximation used

in deriving the LEDM. With this in mind we compare the LEDM in Theorem 1 with

the infeasible exact discrete time representation as follows. The vector y(t) evolves in

4Establishing a set of general regularity conditions and providing a detailed analysis of the asymp-
totic properties of the likelihood-based estimators is beyond the scope of the present paper.
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continuous time as5

dy(t) = f
(
y(t)

)
dt+ Ω

(
y(t)

)
dW (t), t > 0, (8)

where f(y) is defined in Theorem 1 and

Ω(y) = Γ(y)Σ(y) =

 ω1(y)
′

...

ωn(y)
′

 ,

the functions ωi(y) (i = 1, . . . , n) being defined in Assumption 4 and Γ(y) in Assump-

tion 3. The discrete time observations then satisfy

y(th+ h) = y(th) +

∫ th+h

th

f
(
y(r)

)
dr + ξath+h, t = 1, . . . , N − 1, (9)

where ξath+h denotes the actual discrete time disturbance given by

ξath+h =

∫ th+h

th

Ω
(
y(r)

)
dW (r).

Our examination of the LEDM approximation error is then based on a comparison of

ξath+h with ξth+h. The result is stated below.

Proposition 1. Suppose that, in addition to Assumptions 1–4, ∥f
(
y(τ)

)
∥ < ∞ for

all τ ∈ (0, T ] and ∥Cth∥ < ∞ for all t = 1, . . . , N − 1. Then, as h → 0,

Eth

∥∥ξath+h − ξth+h

∥∥ = O(h), t = 1, . . . , N − 1.

Proposition 1 provides the precise rate at which the LEDM approximation error

vanishes, which is shown to be O(h), and, hence, the LEDM has an approximation

order of one. This rate is, in fact, the same as for the simple Euler approximation,6

but the key feature of the LEDM is that it incorporates higher-order properties of the

non-linear function in the SDE which can be important for a fixed sampling interval

h. To see this, note that the disturbance in the simple Euler approximation is

ξEth+h = yth+h − yth − hf(yth),

whereas from (4) in Theorem 1 the LEDM disturbance is of the form

ξth+h = yth+h −Θthyth −Υ1,th+hCth −Υ2,th+h∆th,

5The SDE in (8) is obtained by stacking the equations in (A3) in the Appendix.
6This is relatively easy to establish given the results in the proof of Proposition 1.
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in which the vector Cth depends on the second derivatives of the function f(·), the
matrices Θth, Υ1,th+h and Υ2,th+h depend on exponential functions and integrals of first

derivatives of f(·), and the vector ∆th depends on both first and second derivatives

of f(·). So, although both approximation errors are O(h), the LEDM provides a

more sophisticated approximation than the Euler scheme for any fixed h. Indeed, the

simulation results of Shoji and Ozaki (1997) in a univariate setting suggest that a

LEDM-type approximation outperforms the Euler scheme for a range of fixed values

of h. We investigate the performance of our method in a subsequent section.

3. The LEDM with flow and mixed sampling

Some variables of interest to macroeconomists are not observable as stock variables

in the manner defined in (3). Variables such as consumers’ expenditure, gross domestic

product and investment expenditures are all examples of flow variables whose obser-

vations consist of the accumulation of the underlying rate of flow over the observation

interval. In this section we therefore investigate how the correct treatment of such

variables affects the form of the LEDM. In the first instance we assume all of the vari-

ables in the vector y(t) are flows before extending the analysis to the more challenging

situation where y(t) is comprised of a mixture of both stock and flow variables.

3.1. Flow sampling

In the case of flow variables the relevant sampling equation becomes:

Sampling equation (flows): ȳth =

∫ th

th−h

y(r)dr, t = 1, . . . , N. (10)

One immediate implication of this type of sampling is that it is not possible to con-

struct the matrices in Assumption 4 owing to y(th) not being observed. The following

assumption therefore replaces Assumption 4 in the case of flow variables:

Assumption 5. For i = 1, . . . , n let the functions gi(x), ci(x), fi(y), Ai(y), Bi(y) and

ωi(y) be defined as in Assumption 4. Then, for each t = 1, . . . , N−1 and i = 1, . . . , n,

it is assumed that

Ai

(
y(s)

)
= Ai(ȳth) ≡ Āi,th,

Bi

(
y(s)

)
= Bi(ȳth) ≡ B̄i,th,

ωi

(
y(s)

)
= ωi(ȳth) ≡ ω̄i,th,

 th ≤ s < th+ h,

where ȳth is defined in (10).

Assumption 5 plays the same role as Assumption 4 in the case of stocks but the
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quantities are evaluated at the observed values of the flow variables rather than at the

point-in-time values of stocks. The LEDM for flows is given in the following theorem.

Theorem 2. Let y(t) (0 < t ≤ T ) be generated according to (1) and (2) and let the

observations ȳth (t = 1, . . . , N) satisfy (10). Then, under Assumptions 1–3 and 5, the

LEDM is given by

ȳth+h = Θ̄thȳth + Ῡ1,th+hC̄th + Ῡ2,th+h∆̄th + ξ̄th+h, t = 1, . . . , N − 1, (11)

where

ξ̄th+h =

∫ th+h

th

K̄1,th(th+ h− r)Ω̄thdW (r) +

∫ th

th−h

K̄2,th(th− r)Ω̄thdW (r)

and the matrices and vectors are defined in Table 2.

The LEDM in Theorem 2 also possesses the time-varying autoregressive form

evident in the LEDM in Theorem 1 although the autocovariance properties are more

complicated with flow variables. Treating ȳth as fixed in the components defining ξ̄th+h,

as in Shoji and Ozaki (1997), it follows that ξ̄th+h is a zero mean normally distributed

MA(1) (first-order moving average) process with (conditional) covariance matrix

M̄0,th+h =

∫ h

0

K̄1,th(r)Ω̄thΩ̄
′
thK̄1,th(r)

′dr +

∫ h

0

K̄2,th(r)Ω̄thΩ̄
′
thK̄2,th(r)

′dr (12)

and (conditional) first-order autocovariance matrix

M̄1,th+h =

∫ h

0

K̄2,th(r)Ω̄thΩ̄
′
thK̄1,th(r)

′dr. (13)

These time-varying second moments enable the Gaussian likelihood function to be

constructed, although the process is more complicated than in the case of stock vari-

ables owing to the MA disturbance vector. While a number of methods exist to handle

models with MA disturbances, we shall provide details of a method that is commonly

associated with exact discrete time representations of continuous time systems that

was first proposed in this context by Bergstrom (1985).

We begin by defining the disturbance vector in the LEDM as a function of the

observable vectors and the parameter matrices which, from Theorem 2, takes the form

ξ̄th+h = ȳth+h − Θ̄thȳth − Ῡ1,th+hC̄th − Ῡ2,th+h∆̄th, t = 1, . . . , N − 1. (14)

Let ξ̄ denote the n(N−1)×1 vector comprising the N−1 vectors ξ̄2h, . . . , ξ̄Nh stacked

vertically on top of each other. Then the n(N − 1)×n(N − 1) covariance matrix of ξ̄,

which we denote by Ω̄ = E(ξ̄ξ̄′), is a block-Toeplitz matrix with M̄0,th+h constituting

11



the blocks on the principle diagonal, M̄1,th+h and M̄ ′
1,th+h occupying the bands below

and above the principal diagonal, respectively, and zeros everywhere else. Denoting

the N × n matrix of observations on the flow variables by Ȳ we can write the log-

likelihood function in the form

logL(θ; Ȳ ) = −n(N − 1)

2
log 2π − 1

2
log |Ω̄| − 1

2
ξ̄′Ω̄−1ξ̄. (15)

From a computational point of view there is now an apparent requirement to compute

the determinant and inverse of the sparse n(N − 1)× n(N − 1) matrix Ω̄. Bergstrom

(1985), however, proposed a method that requires only the computation of the deter-

minant and inverse of n× n matrices, as in the case of stock variables, by exploiting

the sparsity of Ω̄. He noted that the Cholesky decomposition of Ω̄, denoted C̄ and

which satisfies Ω̄ = C̄C̄ ′, is a lower triangular n(N − 1)×n(N − 1) matrix that is also

sparse, having no more than 2n non-zero elements in any row in the case of a vector

MA(1) disturbance structure.7 The sparsity enables the non-zero n × n submatrices

of C̄ to be computed following a series of recursions which, as shown by Bergstrom

(1990, pp.150–154), converge rapidly to constant matrices which endows the method

with additional computational efficiencies. Let c̄ii (i = 1, . . . , n(N − 1)) denote the

diagonal elements of C̄, and define ϵ̄ to be the n(N − 1) vector of random variables

satisfying C̄ϵ̄ = ξ̄. The n×1 subvectors of ξ̄ can be calculated using recursive formulae

that exploit the sparsity of C̄ and it is straightforward to show that E(ϵ̄ϵ̄′) = In(N−1).

By noting that

log |Ω̄| = log |C̄C̄ ′| = 2 log

n(N−1)∏
i=1

c̄ii = 2

n(N−1)∑
i=1

log c̄ii

and that

ξ̄′Ω̄−1ξ̄ = ϵ̄′C̄ ′(C̄C̄ ′)−1C̄ϵ̄ = ϵ̄′ϵ̄ =

n(N−1)∑
i=1

ϵ̄2i

we find that (15) can be written

logL(θ; Ȳ ) = −n(N − 1)

2
log 2π −

n(N−1)∑
i=1

log c̄ii −
1

2

n(N−1)∑
i=1

ϵ̄2i . (16)

The calculation of the elements in (16) requires nothing more demanding than the

inversion of n × n matrices. Moreover these computations can also be incorporated

in a Bayesian approach to estimation along the lines described in the case of stock

variables which led to the posterior distribution in (7).

7In the case of a vector MA(q) process the Cholesky matrix has no more that n(q + 1) non-zero
elements in any row.
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It is also of interest to examine the order of the LEDM approximation for flow

variables. In order to do so we compare the conditional expectation of the difference

between ξ̄th+h in (14) with the infeasible exact discrete time representation disturbance

derived from (8). From (9) we have

y(s) = y(s− h) +

∫ s

s−h

f
(
y(r)

)
dr +

∫ s

s−h

Ω
(
y(r)

)
dW (r).

Integrating over s ∈ (th, th+ h] results in

ȳth+h = ȳth + F̄th+h + ξ̄ath+h, t = 1, . . . , N − 1, (17)

where

F̄th+h =

∫ th+h

th

∫ s

s−h

f
(
y(r)

)
drds, ξ̄ath+h =

∫ th+h

th

∫ s

s−h

Ω
(
y(r)

)
dW (r)ds.

These double integrals can be simplified by writing them as the sum of two single

integrals; details are in the proof of Proposition 2.

Proposition 2. Suppose that, in addition to Assumptions 1–3 and 5, ∥f
(
y(τ)

)
∥ < ∞

for τ ∈ (0, T ] and ∥C̄th∥ < ∞ for all t = 1, . . . , N − 1. Then, as h → 0,

Eth

∥∥ξ̄ath+h − ξ̄th+h

∥∥ = O(h2), t = 1, . . . , N − 1.

The LEDM therefore has a higher order of approximation in the case of flow

variables than in the case of stocks. This feature is a consequence of the observations

on flow variables being in the form of an integral of the continuous time process over

an interval of length h which has the effect of increasing the approximation order from

one to two.8 We now turn to the case of mixed stock and flow sampling.

3.2. Mixed stock and flow sampling

In the case where the vector of interest y(t) consists of both stock and flow variables

we assume that the vector y(t) is comprised of ns stock variables, ys(t), and nf flow

variables, yf (t), where ns + nf = n, so that y(t) =
(
ys(t)′, yf (t)′

)′
; there is no loss of

generality in the ordering of stocks before flows. Our discrete time sampling equation

8Note, however, that the approximation order would be O(h) if the observations were normalised

by dividing the integrals by h i.e. if the observations were of the form h−1
∫ th

th−h
y(r)dr. Such a

normalisation has been found to be important in models with integrated and cointegrated variables
by Chambers (2011, p.160).
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is then of the form:

Sampling equation (mixed):

ỹth =

 ỹsth

ỹfth

 =

 ys(th)− ys(th− h)∫ th

th−h

yf (r)dr

 , t = 1, . . . , N. (18)

The observed vectors that comprise ỹth are denoted ỹsth and ỹfth for stocks and flows,

respectively. Note that the stock variables appear as first-differences owing to the way

in which unobservable variables, namely integrals of stocks and levels of flows, are

eliminated in the derivation of the LEDM.

As in the case of flow variables it is no longer possible to construct the quantities in

Assumption 4 owing to y(t) not being completely observable. However, the vector ỹth

does not seem to be entirely relevant for this purpose as it contains the first difference

of the stock component whereas an estimate of the level of y(t) is actually required.

We therefore use the following observable vector in the relevant assumption:

ỹ†th =

 ys(th)∫ th

th−h

yf (r)dr

 , t = 1, . . . , N. (19)

This vector contains the observed levels of stocks and flows and is a more appropri-

ate quantity to use than ỹth for the purposes of the approximation. The relevant

assumption in the mixed sampling case is then:

Assumption 6. For i = 1, . . . , n let the functions gi(x), ci(x), fi(y), Ai(y), Bi(y) and

ωi(y) be defined as in Assumption 4. Then, for each t = 1, . . . , N−1 and i = 1, . . . , n,

it is assumed that

Ai

(
y(s)

)
= Ai(ỹ

†
th) ≡ Ãi,th,

Bi

(
y(s)

)
= Bi(ỹ

†
th) ≡ B̃i,th,

ωi

(
y(s)

)
= ωi(ỹ

†
th) ≡ ω̃i,th,

 th ≤ s < th+ h,

where ỹ†th is defined in (19).

Assumption 6 plays the same role as Assumptions 4 and 5 in the cases of stocks

and flows, respectively. It is also convenient to partition various matrices and vectors

conformably with the stock and flow elements of y(t) and ỹth so that, for a generic
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n× n matrix A and n× 1 vector a, we can write

A =

 Ass Asf

Afs Aff

 , a =

 as

af

 .

In this notation Asf is an ns × nf matrix, for example, while af is an nf × 1 vector.

We also use this notation for partitioning the n×n identity and null matrices, In and

0n, respectively. A further assumption is also utilised to derive the LEDM and relates

to a sub-matrix of the n× n matrix

Ãth =

 Ã′
1,th
...

Ã′
n,th

 , (20)

where the Ãi,th (i = 1, . . . , n) are defined in Assumption 6.

Assumption 7. The ns × ns sub-matrix Ãss
th is nonsingular for all t = 1, . . . , N − 1.

This assumption enables unobserved components9 to be eliminated from the sys-

tem when solving for the LEDM and has been made by a number of authors, including

Agbeyegbe (1987, 1988), Simos (1996) and Chambers (2009).10 It should be stressed

that we do not require the invertibility of the entire matrix Ãth which would, for ex-

ample, preclude stochastic trending behaviour in the system. The LEDM is presented

below.

Theorem 3. Let y(t) (0 < t ≤ T ) be generated according to (1) and (2) and let the

observations ỹth (t = 1, . . . , N) satisfy (18). Then, under Assumptions 1–3, 6 and 7,

the LEDM is given by

ỹth+h = Φ̃thỹth + γ̃th+h + λ̃th+h, t = 1, . . . , N − 1, (21)

where

λ̃th+h =

∫ th+h

th

K̃3,th(th+ h− r)Ω̄thdW (r) +

∫ th

th−h

K̃4,th(th− r)Ω̃thdW (r)

and the matrices and vectors are defined in Tables 3 and 4, respectively.

The LEDM in Theorem 3 displays similar time-varying parameters and heterosked-

asticity as in the pure stock and flow cases although the formulae that underlie the

parameter matrices and covariances are more complicated owing to the mixed nature

9These unobserved components refer to integrals of stock variables and to levels of flow variables.
10In fact, Agbeyegbe (1987, 1988) and Simos (1996) also assume that the entire matrix A is

nonsingular, an assumption that is not required here.
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of the data and the additional complexities involved in solving out unobservable com-

ponents from the system. Conditional on ỹth the disturbance vector, λ̃th+h, is a zero

mean normally distributed process with covariance matrix

M̃0,th+h =

∫ h

0

K̃3,th(r)Ω̃thΩ̃
′
thK̃3,th(r)

′dr +

∫ h

0

K̃4,th(r)Ω̃thΩ̃
′
thK̃4,th(r)

′dr (22)

and first-order autocovariance matrix

M̃1,th+h =

∫ h

0

K̃4,th(r)Ω̄thΩ̃
′
thK̄3,th(r)

′dr. (23)

These time-varying second moments can be used to construct the Gaussian likelihood

function in the same way as with pure flow variables. From Theorem 3 we have the

disturbance vectors in the form

λ̃th+h = ỹth+h − Φ̃thỹth − γ̃th+h, t = 1, . . . , N − 1. (24)

As in the case of flows these disturbance vectors are MA(1) processes and so the same

procedure as in the previous subsection can therefore be followed, resulting in the

log-likelihood function

logL(θ; Ỹ ) = −n(N − 1)

2
log 2π −

n(N−1)∑
i=1

log c̃ii −
1

2

n(N−1)∑
i=1

ϵ̃2i , (25)

where Ỹ denotes the N ×n matrix of observations on the stocks and flows, c̃ii denotes

the i’th diagonal element of the sparse lower triangular Cholesky matrix C̃, and ϵ̃i

denote the elements of the n(N−1) random vector ϵ̃ which satisfies C̃ϵ̃ = λ̃, λ̃ denoting

the n(N − 1)× 1 vector with typical n× 1 subvector λ̃th+h. This log-likelihood can be

combined with a prior on θ in a Bayesian approach, as in (7).

In terms of the order of approximation error associated with the LEDM in the case

of a mixed sample, it can be expected that the rate O(h) holds due to the presence

of stock variables. We do not provide a formal result for this claim but inspection of

the form of λ̃th, allied with the proofs of Propositions 1 and 2, suggests that the same

arguments apply and will lead to the stated result.

4. Simulation evidence

In this section we present some simulation results obtained from two different

DGPs. The first – DGP1 – is based on a model used by Aı̈t-Sahalia (2008) and assesses

the LEDM approach using a non-linear SDE containing two stock variables. The
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second – DGP2 – is based on a simplified version of the model of Christensen, Posch

and Wel (2016) and contains a stock and a flow variable. The relevant log-likelihood

functions were maximised using Bayesian Markov chain Monte Carlo methods based

on the fast Metropolis Adjusted Langevin Algorithm with flat priors; see Durmas et

al. (2017) for details of this algorithm.

4.1. DGP1

The bivariate simulation model used by Aı̈t-Sahalia (2008) is based on a pair of

Ornstein-Uhlenbeck processes given by

dz1(t) =
(
κ11(η1 − z1(t)) + κ12(η2 − z2(t))

)
dt+ dW1(t),

dz2(t) =
(
κ21(η1 − z1(t)) + κ22(η2 − z2(t))

)
dt+ dW2(t),

where W1 and W2 are independent Wiener processes. Define x1(t) = exp(z1(t)) and

x2(t) = exp(z2(t)). Application of Ito’s Lemma results in the pair of non-linear SDEs

given by11

dx1(t) = x1(t)

{
1

2
+ κ11

(
η1 − log x1(t)

)
+ κ12

(
η2 − log x2(t)

)}
dt+ x1(t)dW1(t), (26)

dx2(t) = x2(t)

{
1

2
+ κ21

(
η1 − log x1(t)

)
+ κ22

(
η2 − log x2(t)

)}
dt+ x2(t)dW2(t). (27)

Equations (26) and (27) constitute the transition equations; in terms of the represen-

tation in (2) we have

µ(x; θ) =

 x1

{
1
2
+ κ11

(
η1 − log x1

)
+ κ12

(
η2 − log x2

)}
x2

{
1
2
+ κ21

(
η1 − log x1

)
+ κ22

(
η2 − log x2

)}
 , Σ(x; θ) =

 x1 0

0 x2

 ,

where x = (x1, x2)
′ and θ = (η1, η2, κ11, κ12, κ21, κ22)

′. The continuous time measure-

ment equation and discrete time sampling equation corresponding to (1) and (3) are

then given by, respectively,

y(t) = x(t) (t > 0) and yth = y(th) (t = 1, . . . , N).

The variables are therefore of the stock variety and the LEDM in Theorem 1 is relevant.

The parameter values used in the simulations are taken from Aı̈t-Sahalia (2008)

and can be found in Table 5. One of the adjustment parameters, κ21, is set to zero but

this information is not used in the estimations, unlike Aı̈t-Sahalia (2008) who imposes

the zero restriction in estimation. There are, therefore, six unknown parameters (the

elements of θ) to estimate. We consider three different combinations of data span (T )

11See equation (49) of Aı̈t-Sahalia (2008).
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and sampling interval (h) in order to examine, in particular, how the estimates behave

as sampling becomes more frequent. Case I sets T = 100 and h = 1 which can be

interpreted as 100 years of annual data. The sample size is N = 100 in this case. Case

II sets T = 35 and h = 1/4 (so that N = 140) which would correspond to 35 years of

quarterly data. Finally, Case III sets T = 25 and h = 1/12 which can be regarded as

25 years of monthly data; here, N = 300.

The results of 10,000 simulations of the non-linear bivariate model DGP1 are

reported in Table 5. The biases associated with the estimation of η1 and η2 are small

and negative and decrease as the sample size increases; the standard deviations also

get smaller with increasing sample size. For the speed-of-adjustment parameters κij it

can be seen that there is a small, positive bias in the estimation of κ11, slightly larger

negative biases in respect of κ12 and κ21, and a larger bias connected to the estimation

of κ22. This last feature is also evident in the simulation results reported in Table 1

of Aı̈t-Sahalia (2008) against whose results ours compare favourably bearing in mind

that he used a larger sample size (N = 500) and imposed the restriction that κ21 = 0.

4.2. DGP2

Our second DGP involves a flow variable in addition to a stock variable and is a

simplified version of the model proposed in Christensen, Posch and Wel (2016) who

derive the equilibrium dynamics for a small macroeconomic model that includes a

financial sector. Their model involves three SDEs of which we focus on the following

two:

dr(t) = κ
(
γ − r(t)

)
dt+ ηdB(t), (28)

d logC(t) =
(
r(t)− ρ− δ − 1

2
σ2
)
dt+ σdZ(t), (29)

where C(t) denotes consumption (a flow variable), r(t) is the rental rate of capital

(a stock variable), and Z(t) and B(t) are standard Brownian motion (or Wiener)

processes. One difficulty with this formulation is that, although C(t) is a flow variable,

we don’t observe the integrals of the logarithms which are the relevant quantities for

the LEDM. We can clearly take the logarithms of the integrals, but these quantities

are not the same i.e.

log

∫ th

th−h

C(r)dr ̸=
∫ th

th−h

logC(r)dr.

This issue has been discussed by Bailey, Hall and Phillips (1987) in the context of a

continuous time macroeconomic model and by Seong, Ahn and Zadrozny (2013) when

considering discrete time temporal aggregation with mixed frequency data. However,

we can overcome this problem by the application of Ito’s Lemma on the transformation
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C(t) = exp(logC(t)), in which case our bivariate SDE system becomes

dr(t) = κ
(
γ − r(t)

)
dt+ σ1dW1(t), (30)

dC(t) = C(t)
(
r(t)− ρ

)
dt+ σ2C(t)dW2(t), (31)

where W1(t) and W2(t) are standard Brownian motion processes. Although this trans-

formation has made the consumption equation non-linear in C(t) we are able to handle

this non-linearity using our LEDM method, an outcome which is not an option with

standard linear continuous time methods.

Equations (30) and (31) represent the continuous time transition equations corre-

sponding to (2) in terms of which

µ(x; θ) =

 κ(γ − x1)

x2(x1 − ρ)

 , Σ(x : θ) =

 σ1 0

0 σ2x2

 ,

where x = (x1, x2)
′ = (r, C)′ and θ = (κ, γ, ρ, σ1, σ2)

′. The continuous time measure-

ment equation corresponding to (1) and the discrete time sampling equation corre-

sponding to (18) are then simply

y(t) =

 r(t)

C(t)

 (t > 0) and ỹth =

 rth − rth−h∫ th

th−h

C(r)dr

 (t = 1, . . . , N).

In view of the mixed sampling the LEDM in Theorem 3 is relevant.

In the simulations we use the same five parameter values as in Christensen, Posch

and Wel (2016) which can be found in Table 6. We also consider three different

combinations of data span (T ) and sampling interval (h) as follows. Case I sets

T = 75 and h = 1 which can be interpreted as 75 years of annual data in which case

the sample size is N = 75. Case II sets T = 25 and h = 1/4 (so that N = 100) which

would correspond to 25 years of quarterly data. Finally, Case III sets T = 25 and

h = 1/12 which can be regarded as 25 years of monthly data, so that N = 300.

The results of 10,000 replications of the model can be found in Table 6. The

estimation biases associated with each parameter are small and become smaller as

the sample size increases; the same is true of the standard deviations. This suggests

that the LEDM methods works well in finite samples even in the case of mixed data

sampling.
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5. Conclusions

In this paper we have developed a method for estimating the parameters of a

system of non-linear SDEs under three sampling scenarios for the discrete time data

generated by the underlying continuous time system. The LEDM method thereby

enables us to handle the stock/flow distinction of economic variables while also taking

into account the non-linear features of the economic model in a manageable way. The

LEDM method also possesses two further advantages. First, it nests the well-known

exact discrete model when the underlying system of SDEs is linear, and secondly

it provides a basis for the efficient Bayesian or Classical estimation of multivariate

economic models formulated as systems of non-linear SDEs (including DSGE models).

Our simulation results explored the performance of the LEDM method in two bivariate

non-linear SDE systems, one containing only stock variables, the other containing a

stock and a flow. In both cases the estimates have small finite sample biases that

decrease as the sample size increases, as do the standard deviations, suggesting that

the method provides a feasible estimation procedure in practical situations.

The LEDM method in this paper has been applied to a system of diffusion equa-

tions in which the drift and volatility terms can be non-linear functions of the pa-

rameters and variables, features which are of empirical relevance when dealing with

macroeconomic and financial data. In the same way that exact discrete models can

be extended from first- to higher-order systems in the linear case (see, for example,

Bergstrom, 1983, Chambers, 1999, Chambers and Thornton, 2012) it is, in principle,

possible to extend the LEDM method to higher-order non-linear SDEs, albeit with

a rise in notational complexity. Moreover, in view of the relevance of our model to

macroeconomics and finance and the fact that financial variables are typically ob-

served more frequently than macroeconomics variables, the LEDM could realistically

form the basis for handling systems with mixed frequency data, thereby extending

the results for linear systems developed by Chambers (2016). Such extensions, as well

as additional empirical applications, are beyond the scope of the present paper but

represent potentially fruitful avenues for future research.
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Appendix: Proofs

Proof of Theorem 1. Under Assumptions 1 and 2 there exists a unique strong

solution to the stochastic differential equation system (2). Applying Ito’s lemma to

the i’th element of (1), and making use of the diffusion (2), results in

dyi(t) =

[(
∂γi
(
x(t)

)
∂x(t)

)′

µ
(
x(t)

)
+

1

2
tr

{
Σ
(
x(t)

)′ ∂2γi
(
x(t)

)
∂x(t)∂x(t)′

Σ
(
x(t)

)}]
dt

+

(
∂γi
(
x(t)

)
∂x(t)

)′

Σ
(
x(t)

)
dW (t)

= gi
(
x(t)

)
dt+ hi

(
x(t)

)′
dW (t), i = 1, . . . , n, (A1)

where the functions gi(x) and hi(x) are defined in Assumption 4. We now use the in-

verse transformation in Assumption 3 allied with the functions fi(y) and ωi(y) defined

in Assumption 4 to write (A1) in terms of y(t) in the form

dyi(t) = fi
(
y(t)

)
dt+ ωi

(
y(t)

)′
dW (t), i = 1, . . . , n. (A2)

Now, applying Ito’s Lemma to the function fi(y) we obtain

dfi
(
y(t)

)
=

(
∂fi
(
y(t)

)
∂y(t)

)′

dy(t) +
1

2
tr

{
Ω
(
y(t)

)′ ∂2fi
(
y(t)

)
∂y(t)∂y(t)′

Ω
(
y(t)

)}
dt, i = 1, . . . , n,

which is of the form

dfi
(
y(t)

)
= Ai

(
y(t)

)′
dy(t) +

1

2
tr
{
Ω
(
y(t)

)′
Bi

(
y(t)

)
Ω
(
y(t)

)}
dt, i = 1, . . . , n, (A3)

where Ai(y) and Bi(y) are defined in Assumption 4 and Ω(y) is defined following (8).

However, under Assumption 4, for t ∈ [th, s) where th ≤ s < th+ h,

dfi
(
y(t)

)
= A′

i,thdy(t) +
1

2
tr {Ω′

thBi,thΩth} dt, i = 1, . . . , n. (A4)

Integrating (A4) from th to s yields

fi
(
y(s)

)
− fi

(
y(th)

)
= A′

i,th

(
y(s)− y(th)

)
+

1

2
tr {Ω′

thBi,thΩth} (s− th), i = 1, . . . , n.

(A5)

Now evaluate (A2) at t = s:

dyi(s) = fi
(
y(s)

)
ds+ ωi

(
y(s)

)′
dW (s), i = 1, . . . , n. (A6)

Solving (A5) for fi
(
y(s)

)
and substituting the resulting expression into (A6) yields,
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for i = 1, . . . , n,

dyi(s) =

(
fi
(
y(th)

)
+ A′

i,th

(
y(s)− y(th)

)
+

1

2
tr {Ω′

thBi,thΩth} (s− th)

)
ds

+ωi

(
y(s)

)′
dW (s)

= A′
i,thy(s)ds+

(
fi
(
y(th)

)
− A′

i,thy(th)−
1

2
tr {Ω′

thBi,thΩth} th
)
ds

+
1

2
tr {Ω′

thBi,thΩth} sds+ ωi

(
y(s)

)′
dW (s). (A7)

Stacking over i = 1, . . . , n we then obtain the system

dy(s) =
(
Athy(s) + Cths+∆th

)
ds+ ΩthdW (s), (A8)

where

Ath =

 A′
1,th
...

A′
n,th

 , Cth =


1
2
tr {Ω′B1,thΩ}

...
1
2
tr {Ω′Bn,thΩ}

 , ∆th = f
(
y(th)

)
− Athy(th)− Cthth

and we have also used Assumption 4 to set ωi

(
y(s)

)
= ωi,th. Now define the indicator

function

1[th,th+h)(s) =

 1 if th ≤ s < th+ h,

0 otherwise.

as well as the functions A(s) = Ath1[th,th+h)(s), Ψ(s) = (Cths + ∆th)1[th,th+h)(s) and

Ω(s) = Ωth1[th,th+h)(s) for th ≤ s < th+ h. Then (A8) can be written in the form

dy(s) =
(
A(s)y(s) + Ψ(s)

)
ds+ Ω(s)dW (s). (A9)

Note that A(s) and Ω(s) are matrices, and Ψ(s) is a vector, of non-anticipating step

functions on [0, T ] that remain constant over each interval [th, th+h) (t = 1, . . . , N−1);

for a definition of integrals of non-anticipating functions with respect to a Wiener

process see, for example, Arnold (1974, p.65). Thus, under Assumptions 1–4, (A9) is

a well-defined linear stochastic differential equation system. Moreover, given that the

elements of the coefficient matrix and vector are time-varying step functions enables

us to derive an exact discrete model along the lines of Robinson (2009); see also

Bergstrom (1983) and Chambers (1999) for the constant coefficient case. The resulting

exact discrete model is given by

yth+h = Θthyth +Υ1,th+hCth +Υ2,th+h∆th + ξth+h, t = 1, . . . , N − 1, (A10)
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where Θth, Υ1,th+h, Υ2,th+h and ξth+h are as defined in the Theorem. The covariance

properties of ξth+h discussed following Theorem 1 follow from the expression for ξth+h

given there. 2

Proof of Proposition 1. We begin by examining the difference

ξath+h − ξth+h =

(
y(th+ h)− y(th)−

∫ th+h

th

f
(
y(r)

)
dr

)
−
(
y(th+ h)−Θthy(th)−Υ1,th+hCth −Υ2,th+h∆th

)
= (Θth − In) y(th) + Υ1,th+hCth +Υ2,th+h∆th −

∫ h

0

f
(
y(th+ h− s)

)
ds

where a change of variable to s = th + h − r has resulted in the final expression for

the integral involving f(·). Define the following matrices:

P1,th =

∫ h

0

seAthsds, P2,th =

∫ h

0

eAthsds.

Then, by the same change of variable as above, we obtain

Υ1,th+h =

∫ th+h

th

eAth(th+h−r)rdr =

∫ h

0

eAths(th+ h− s)ds = (th+ h)P2,th − P1,th,

Υ2,th+h =

∫ th+h

th

eAth(th+h−r)dr =

∫ h

0

eAthsds = P2,th.

Combining the above and using the definition of ∆th we then find that

Υ1,th+hCth +Υ2,th+h∆th

=
(
(th+ h)P2,th − P1,th

)
Cth + P2,th

(
f
(
y(th)

)
− Athy(th)− Cthth

)
= (hP2,th − P1,th)Cth + P2,th

(
f
(
y(th)

)
− Athy(th)

)
.

Hence, recalling that Θth = eAthh, we find that

ξath+h − ξth+h =
(
eAthh − In

)
y(th) + (hP2,th − P1,th)Cth

+P2,th

(
f
(
y(th)

)
− Athy(th)

)
−
∫ h

0

f
(
y(th+ h− s)

)
ds

=
(
eAthh − In − P2,thAth

)
y(th) + (hP2,th − P1,th)Cth

+P2,thf
(
y(th)

)
−
∫ h

0

f
(
y(th+ h− s)

)
ds. (A11)
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In what follows we shall make use of the following expansions:

P1,th =

∫ h

0

seAthsds =

∫ h

0

s

(
∞∑
j=0

(Aths)
j

j!

)
ds =

∞∑
j=0

(∫ h

0

sj+1ds

)
Aj

th

j!

=
∞∑
j=0

hj+2Aj
th

(j + 2)j!

=
∞∑
j=2

hjAj−2
th

j(j − 2)!
,

P2,th =

∫ h

0

eAthsds =

∫ h

0

(
∞∑
j=0

(Aths)
j

j!

)
ds =

∞∑
j=0

(∫ h

0

sjds

)
Aj

th

j!

=
∞∑
j=0

hj+1Aj
th

(j + 1)j!

=
∞∑
j=1

hjAj−1
th

j!
.

Using the second result we find that the first term in (A11) is zero because

eAthh − In − P2,thAth = In +
∞∑
j=1

hjAj
th

j!
− In −

(
∞∑
j=1

hjAj−1
th

j!

)
Ath = 0;

this is a generalisation of the result that

∫ h

0

eAsds = A−1(ehA − In) (provided A

is nonsingular), which can be written in the form ehA − In −
∫ h

0

eAsdsA using the

commutability of eA and A. Hence

Eth

∥∥ξath+h − ξth+h

∥∥ ≤ ∥(hP2,th − P1,th)Cth∥+
∥∥P2,thf

(
y(th)

)∥∥
+Eth

∥∥∥∥∫ h

0

f
(
y(th+ h− s)

)
ds

∥∥∥∥
≤ ∥hP2,th − P1,th∥ ∥Cth∥+ ∥P2,th∥

∥∥f(y(th))∥∥
+

∫ h

0

Eth

∥∥f(y(th+ h− s)
)∥∥ ds. (A12)
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From the series expansions of P1,th and P2,th it is clear that P2,th = O(h) while

hP2,th − P1,th = h
∞∑
j=1

hjAj−1
th

j!
−

∞∑
j=2

hjAj−2
th

j(j − 2)!

= h

(
hIn +

h2Ath

2
+ . . .

)
−
(
h2

2
In +

h3Ath

3
+ . . .

)
=

h2

2
In +O(h3)

and so this matrix is O(h2). It then follows that

Eth

∥∥ξath+h − ξth+h

∥∥ ≤ O(h) +O(h2) +O(h) = O(h)

under the conditions stated in the Proposition. 2

Proof of Theorem 2. The proof starts with (A10) in which we choose a value

s ∈ (th, th+ h] so that, using Assumption 5,

y(s) = ehĀthy(s− h) +

∫ s

s−h

eĀth(s−r)rdrC̄th

+

∫ s

s−h

eĀth(s−r)dr∆̄th +

∫ s

s−h

eĀth(s−r)Ω̄thdW (r). (A13)

Integrating (A13) over s ∈ [th, th+ h) yields∫ th+h

th

y(s)ds = ehĀth

∫ th+h

th

y(s− h)ds+

∫ th+h

th

(∫ s

s−h

eĀth(s−r)rdr

)
dsC̄th

+

∫ th+h

th

(∫ s

s−h

eĀth(s−r)dr

)
ds∆̄th +

∫ th+h

th

(∫ s

s−h

eĀth(s−r)ds

)
Ω̄thdW (r),

which is of the form

ȳth+h = Θ̄thȳth + Ῡ1,th+hC̄th + Ῡ2,th+h∆̄th + ξ̄th+h,

where Θ̄th = ehĀth ,

Ῡ1,th+h =

∫ th+h

th

(∫ s

s−h

eĀth(s−r)rdr

)
ds,

Ῡ2,th+h =

∫ th+h

th

(∫ s

s−h

eĀth(s−r)dr

)
ds,

ξ̄th+h =

∫ th+h

th

(∫ s

s−h

eĀth(s−r)ds

)
Ω̄thdW (r).

The double integrals can be simplified to yield the expressions in the Theorem. For
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example, we can re-write Ῡ1,th+h in the form

Ῡ1,th+h =

∫ th+h

th

(∫ th+h

r

eĀth(s−r)ds

)
rdr +

∫ th

th−h

(∫ r+h

th

eĀth(s−r)ds

)
rdr.

But, by a simple change of variable,∫ th+h

r

eĀth(s−r)ds =

∫ th+h−r

0

eĀthwdw = K̄1,th(th+ h− r),

∫ r+h

th

eĀth(s−r)ds =

∫ h

th−r

eĀthwdw = K̄2,th(th− r),

where K̄1,th(r) and K̄2,th(r) are defined in the Theorem; this yields the stated expres-

sion for Ῡ1,th+h. Similar arguments apply to Ῡ2,th+h and ξ̄th+h; in the latter case we

obtain

ξ̄th+h =

∫ th+h

th

K̄1,th(th+ h− r)Ω̄thdW (r) +

∫ th

th−h

K̄2,th(th− r)Ω̄thdW (r).

The mean and autocovariance properties follow directly from this expression. 2

Proof of Proposition 2. The proof of Proposition 2 follows in a similar way to that

of Proposition 1. Using Theorem 2 and (17) we find that

ξ̄ath+h − ξ̄th+h =
(
ȳth+h − ȳth − F̄th+h

)
−
(
ȳth+h − Θ̄thȳth − Ῡ1,th+hC̄th − Ῡ2,th+h∆̄th

)
=

(
Θ̄th − In

)
ȳth + Ῡ1,th+hC̄th + Ῡ2,th+h∆̄th − F̄th+h.

Using the definitions of K̄1,th(r) and K̄2,th(r) in Theorem 2 we obtain

Ῡ2,th+h =

∫ th+h

th

∫ th+h−r

0

eĀthsdsdr +

∫ th

th−h

∫ h

th−r

eĀthsdsdr.

Using the change of variable w = th+ h− r in the first integral and w = th− r in the

second it follows that

Ῡ2,th+h =

∫ h

0

∫ w

0

eĀthsdsdw +

∫ h

0

∫ h

w

eĀthsdsdw

=

∫ h

0

∫ h

0

eĀthsdsdw

= hP̄2,th

where

P̄2,th =

∫ h

0

eĀthsds.
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Applying similar reasoning to Ῡ1,th+h yields

Ῡ1,th+h =

∫ h

0

∫ w

0

eĀthsds(th+ h− w)dw +

∫ h

0

∫ h

w

eĀthsds(th− w)dw

= (th+ h)

∫ h

0

∫ w

0

eĀthsdsdw −
∫ h

0

∫ w

0

eĀthsdswdw

+th

∫ h

0

∫ h

w

eĀthsdsdw −
∫ h

0

∫ h

w

eĀthsdswdw

= thῩ2,th+h + h

∫ h

0

∫ w

0

eĀthsdsdw −
∫ h

0

∫ h

0

eĀthsdswdw.

Combining these expressions for Ῡ1,th+h and Ῡ2,th+h with C̄th and the definition of ∆̄th

in Theorem 2 gives

Ῡ1,th+hC̄th + Ῡ2,th+h∆̄th

=

(
thῩ2,th+h + h

∫ h

0

∫ w

0

eĀthsdsdw −
∫ h

0

∫ h

0

eĀthsdswdw

)
C̄th

+Ῡ2,th+h

(
f(ȳth)− Āthȳth − C̄thth

)
=

(
h

∫ h

0

∫ w

0

eĀthsdsdw −
∫ h

0

∫ h

0

eĀthsdswdw

)
C̄th

+hP̄2,th

(
f(ȳth)− Āthȳth

)
.

Turning to F̄th+h it is possible to simplify the double integral as follows:

F̄th+h =

∫ th

th−h

∫ r+h

th

f
(
y(r)

)
dsdr +

∫ th+h

th

∫ th+h

r

f
(
y(r)

)
dsdr

=

∫ th

th−h

(r + h− th)f
(
y(r)

)
dr +

∫ th+h

th

(th+ h− r)f
(
y(r)

)
dr

=

∫ h

0

(h− u)f
(
y(th− u)

)
du+

∫ h

0

uf
(
y(th+ h− u)

)
du

where the final integrals are obtained by the changes of variable to u = th − r and
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u = th+ h− r, respectively. Using these results we obtain

ξ̄ath+h − ξ̄th+h =
(
Θ̄th − In − hP̄2,thĀth

)
ȳth + hP̄2,thf(ȳth)

+

∫ h

0

(
h

∫ w

0

eĀthsds− w

∫ h

0

eĀthsds

)
dw C̄th

+

∫ h

0

(h− u)f
(
y(th− u)

)
du+

∫ h

0

uf
(
y(th+ h− u)

)
du

and so the quantity of interest satisfies

Eth

∥∥ξ̄ath+h − ξ̄th+h

∥∥ ≤
∥∥Θ̄th − In − hP̄2,thĀth

∥∥ ∥ȳth∥+ h
∥∥P̄2,th

∥∥ ∥f(ȳth)∥
+

∫ h

0

∥∥∥∥h∫ w

0

eĀthsds− w

∫ h

0

eĀthsds

∥∥∥∥ dw ∥∥C̄th

∥∥
+h

∫ h

0

∥∥f(y(th− u)
)∥∥ du+ h

∫ h

0

∥∥f(y(th+ h− u)
)∥∥ du.

The first term involves the matrix

Θ̄th − In − hP̄2,thĀth = eĀthh − In − h
∞∑
j=1

hjĀj−1
th

j!
Āth

=
∞∑
j=1

hjĀj
th

j!
− h

∞∑
j=1

hjĀj
th

j!

= (1− h)
∞∑
j=1

hjĀj
th

j!
= O(h)

while the second term involves

hP̄2,th = h

∞∑
j=1

hjĀj−1
th

j!
= O(h2).

In the third term, consider∥∥∥∥h∫ w

0

eĀthsds− w

∫ h

0

eĀthsds

∥∥∥∥ ≤ h

∥∥∥∥∫ w

0

eĀthsds

∥∥∥∥+ w

∥∥∥∥∫ h

0

eĀthsds

∥∥∥∥
≤ h

∫ w

0

∥∥∥eĀths
∥∥∥ ds+ w

∫ h

0

∥∥∥eĀths
∥∥∥ ds

≤ (h+ w)

∫ h

0

∥∥∥eĀths
∥∥∥ ds.
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Then∫ h

0

∥∥∥∥h∫ w

0

eĀthsds− w

∫ h

0

eĀthsds

∥∥∥∥ dw ≤
∫ h

0

(h+ w)

∫ h

0

∥∥∥eĀths
∥∥∥ dsdw

= h2

∫ h

0

∥∥∥eĀths
∥∥∥ ds+ h2

2

∫ h

0

∥∥∥eĀths
∥∥∥ ds

=
3h2

2

∫ h

0

∥∥∥eĀths
∥∥∥ ds = O(h3).

Hence, given the stated assumptions and noting that ∥ȳth∥ = O(h), we have

Eth

∥∥ξ̄ath+h − ξ̄th+h

∥∥ ≤ O(h2) +O(h2) +O(h3) +O(h2) +O(h2) = O(h2)

as claimed. 2

Proof of Theorem 3. Consider, first, the integral of y(t) = [ys(t)′, yf (t)′]′, given by

∫ th+h

th

y(r)dr =

 w̃s
th+h

ỹfth+h

 ,

where ỹfth+h is the observable flow component and w̃s
th+h denotes the unobservable

integral of the stock variables. From the form of the LEDM for flows in Theorem 2 we

can evaluate its components at the observed vector ỹ†th using Assumption 6 to obtain w̃s
th+h

ỹfth+h

 =

 Θ̃ss
th Θ̃sf

th

Θ̃fs
th Θ̃ff

th

 w̃s
th

ỹfth

+

 c̃sth+h

c̃fth+h

+

 ξ̃sth+h

ξ̃fth+h

 , (A14)

where

ξ̃th+h =

∫ th+h

th

K̃1,th(th+ h− r)Ω̃thdW (r) +

∫ th

th−h

K̃2,th(th− r)Ω̃thdW (r)

and the other components are defined in the Theorem. Partitioning (A9), integrating

over s ∈ [th, th+ h) and using Assumption 6 yields ỹsth+h

w̃f
th+h

 =

 Ãss
th Ãsf

th

Ãfs
th Ãff

th

 w̃s
th+h

ỹfth+h

+

 g̃sth+h

g̃fth+h

+

 η̃sth+h

η̃fth+h

 , (A15)

where w̃f
th+h = yf (th + h) − yf (th) is unobservable, g̃th+h is defined in the Theorem

and

η̃th+h = Ω̃th

∫ th+h

th

dW (r).
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The objective is to eliminate the unobservable components from these representations

that link observables to unobservables. From the first ns equations of (A15) we obtain

ỹsth+h = Ãss
thw̃

s
th+h + Ãsf

th ỹ
f
th+h + g̃sth+h + η̃sth+h

which can be solved, under Assumption 7, for w̃s
th+h:

w̃s
th+h =

(
Ãss

th

)−1 (
ỹsth+h − Ãsf

th ỹ
f
th+h − g̃sth+h − η̃sth+h

)
. (A16)

This equation can be used to substitute for w̃s
th+h and w̃s

th in the first ns equations of

(A14) to give(
Ãss

th

)−1 (
ỹsth+h − Ãsf

th ỹ
f
th+h − g̃sth+h − η̃sth+h

)
= Θ̃ss

th

(
Ãss

th−h

)−1 (
ỹsth − Ãsf

th−hỹ
f
th − g̃sth − η̃sth

)
+ Θ̃sf

th ỹ
f
th + c̃sth+h + ξ̃sth+h.

This equation can be rearranged to give

ỹsth+h = Ãsf
th ỹ

f
th+h + Ãss

thΘ̃
ss
th

(
Ãss

th−h

)−1

ỹsth + Ãss
th

(
Θ̃sf

th − Θ̃ss
th

(
Ãss

th−h

)−1

Ãsf
th−h

)
ỹfth

+g̃sth+h + Ãss
thc̃

s
th+h − Ãss

thΘ̃
ss
th

(
Ãss

th−h

)−1

g̃sth

+η̃sth+h + Ãss
thξ̃

s
th+h − Ãss

thΘ̃
ss
th

(
Ãss

th−h

)−1

η̃sth. (A17)

Now substitute the lag of (A16) into the last nf equations of (A14) to give

ỹfth+h = Θ̃fs
th

(
Ãss

th−h

)−1

ỹsth +

(
Θ̃ff

th − Θ̃fs
th

(
Ãss

th−h

)−1

Ãsf
th−h

)
ỹfth

+c̃fth+h − Θ̃fs
th

(
Ãss

th−h

)−1

g̃sth + ξ̃fth+h − Θ̃fs
th

(
Ãss

th−h

)−1

η̃sth

= Φ̃fs
th ỹ

s
th + Φ̃ff

th ỹ
f
th + γ̃f

th+h + λ̃f
th+h, (A18)

where

λ̃f
th+h = ξ̃fth+h − Θ̃fs

th

(
Ãss

th−h

)−1

η̃sth

and all other terms are defined in the Theorem. Then, substituting (A18) for ỹfth+h
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on the right-hand-side of (A17) yields

ỹsth+h =
(
Ãss

thΘ̃
ss
th + Ãsf

th Θ̃
fs
th

)(
Ãss

th−h

)−1

ỹsth +

[
Ãsf

th

(
Θ̃ff

th − Θ̃fs
th

(
Ãss

th−h

)−1

Ãsf
th−h

)
+ Ãss

th

(
Θ̃sf

th − Θ̃ss
th

(
Ãss

th−h

)−1

Ãsf
th−h

)]
ỹfth

+Ãss
thc̃

s
th+h + Ãsf

th c̃
f
th+h + g̃sth+h −

(
Ãss

thΘ̃
ss
th + Ãsf

th Θ̃
fs
th

)(
Ãss

th−h

)−1

g̃sth

+Ãss
thξ̃

s
th+h + Ãsf

th ξ̃
f
th+h + η̃sth+h −

(
Ãss

thΘ̃
ss
th + Ãsf

th Θ̃
fs
th

)(
Ãss

th−h

)−1

η̃sth

= Φ̃ss
thỹ

s
th + Φ̃sf

th ỹ
f
th + γ̃s

th+h + λ̃s
th+h, (A19)

where

λ̃s
th+h = Ãss

thξ̃
s
th+h + Ãsf

th ξ̃
f
th+h + η̃sth+h −

(
Ãss

thΘ̃
ss
th + Ãsf

th Θ̃
fs
th

)(
Ãss

th−h

)−1

η̃sth

and all other terms are defined in the Theorem. The representation for λ̃th is obtained

by first stacking the expressions for λ̃s
th+h and λ̃f

th+h in a vector, so that

λ̃th = H̃1,thξ̃th+h + H̃2,thη̃th+h − H̃3,thη̃th,

where H̃1,th, H̃2,th and H̃3,th are defined in the Theorem. The expression in terms

of the integrals with respect to the Wiener process is obtained by substituting the

definitions of ξ̃th+h, η̃th+h and η̃th following (A14) and (A15), respectively. 2
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Table 1: Matrices and Vectors in Theorem 1

Matrix Definition Matrix Definition

Ath

 A′
1,th
...

A′
n,th

 Ωth

 ω′
1,th
...

ω′
n,th



Υ1,th+h

∫ th+h

th

eAth(th+h−r)rdr Υ2,th+h

∫ th+h

th

eAth(th+h−r)dr

Θth ehAth

Vector Definition Vector Definition

Cth
1

2

 tr {Ω′
thB1,thΩth}

...
tr {Ω′

thBn,thΩth}

 ∆th f(yth)− Athyth − Cthth

f(y)
(
f1(y), . . . , fn(y)

)
Note: Ai,th, Bi,th, ωi,th and fi(y) (i = 1, . . . , n) are defined in Assumption 4.
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Table 2: Matrices and Vectors in Theorem 2

Matrix Definition Matrix Definition

Āth

 Ā′
1,th
...

Ā′
n,th

 Ω̄th

 ω̄′
1,th
...

ω̄′
n,th


Θ̄th ehĀth

Matrix Definition

Ῡ1,th+h

∫ th+h

th

K̄1,th(th+ h− r)rdr +

∫ th

th−h

K̄2,th(th− r)rdr

Ῡ2,th+h

∫ th+h

th

K̄1,th(th+ h− r)dr +

∫ th

th−h

K̄2,th(th− r)dr

Matrix Definition Matrix Definition

K̄1,th(r)

∫ r

0

esĀthds K̄2,th(r)

∫ h

r

esĀthds

Vector Definition Vector Definition

C̄th
1

2

 tr
{
Ω̄′

thB̄1,thΩ̄th

}
...

tr
{
Ω̄′

thB̄n,thΩ̄th

}
 ∆̄th f(ȳth)− Āthȳth − C̄thth

Note: Āi,th, B̄i,th and ω̄i,th are defined in Assumption 5 and f(y) is defined in Table
1.
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Table 3: Matrices in Theorem 3

Matrix Definition Matrix Definition

Ãth

 Ã′
1,th
...

Ã′
n,th

 Ω̃th

 ω̃′
1,th
...

ω̃′
n,th


Φ̃ss

th

(
Ãsf

th Θ̃
fs
th + Ãss

thΘ̃
ss
th

)(
Ãss

th−h

)−1
Φ̃sf

th Ãsf
th Θ̃

ff
th + Ãss

thΘ̃
sf
th − Φ̃ss

thÃ
sf
th−h

Φ̃fs
th Θ̃fs

th

(
Ãss

th−h

)−1
Φ̃ff

th Θ̃ff
th − Φ̃fs

th Ã
sf
th−h

Θ̃th ehÃth

Matrix Definition

Υ̃1,th+h

∫ th+h

th

K̃1,th(th+ h− r)rdr +

∫ th

th−h

K̃2,th(th− r)rdr

Υ̃2,th+h

∫ th+h

th

K̃1,th(th+ h− r)dr +

∫ th

th−h

K̃2,th(th− r)dr

Matrix Definition Matrix Definition

K̃1,th(r)

∫ r

0

esÃthds K̃2,th(r)

∫ h

r

esÃthds

K̃3,th(r) H̃1,thK̃1,th(r) + H̃2,th K̃4,th(r) H̃1,thK̃2,th(r)− H̃3,thΩ̃th−hΩ̃
−1
th

H̃1,th

(
Ãss

th Ãsf
th

0fsn Iffn

)
H̃2,th

(
Issn 0sfn

0fsn 0ffn

)

H̃3,th

 Φ̃ss
th 0sfn

Θ̃fs
th

(
Ãss

th−h

)−1

0ffn


Note: Āi,th, B̄i,th and ω̄i,th are defined in Assumption 6.
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Table 4: Vectors in Theorem 3

Vector Definition Vector Definition

C̃th
1

2


tr
{
Ω̃′

thB̃1,thΩ̃th

}
...

tr
{
Ω̃′

thB̃n,thΩ̃th

}
 ∆̃th f(ỹth)− Ãthỹth − C̃thth

γ̃s
th+h Ãss

thc̃
s
th+h + Ãsf

th c̃
f
th+h + g̃sth+h − Φ̃ss

thg̃
s
th γ̃f

th+h c̃fth+h − Φ̃fs
th g̃

s
th

c̃th+h Υ̃1,th+hC̃th + Υ̃2,th+h∆̃th g̃th
h

2
(2th+ h)C̃th + h∆̃th

Note: Ai,th, Bi,th and ωi,th (i = 1, . . . , n) are defined in Assumption 6 and f(y) is defined in
Table 1.
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Table 5: Monte Carlo Results for DGP 1

Case I Case II Case III
(T = 100, h = 1, N = 100) (T = 35, h = 1/4, N = 140) (T = 25, h = 1/12, N = 300)

Parameter Value Bias Std.Dev. Bias Std.Dev. Bias Std.Dev.

η1 0 −0.004 0.089 −0.003 0.071 −0.002 0.071

η2 0 −0.007 0.075 −0.006 0.042 −0.004 0.035

κ11 5 1.721×10−3 1.651×10−3 1.651×10−3 1.351×10−3 1.251×10−3 1.161×10−3

κ12 1 −0.083 1.801×10−3 −0.075 1.601×10−3 −0.060 1.521×10−3

κ21 0 −0.079 1.541×10−3 −0.067 1.101×10−3 −0.032 0.871×10−3

κ22 10 0.560 1.971×10−3 0.443 1.741×10−3 0.380 1.620×10−3

Note: “Bias” refers to the mean value of θ̂− θ0 across all replications, where θ̂ is the posterior mean estimate using a flat
prior for θ and θ0 is the true parameter vector, and “Std.Dev.” denotes the standard deviation of the same quantity. The
reported results are based on 10,000 Monte Carlo replications.
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Table 6: Monte Carlo Results for DGP 2

Case I Case II Case III
(T = 75, h = 1, N = 75) (T = 25, h = 1/4, N = 100) (T = 25, h = 1/12, N = 300)

Parameter Value Bias Std.Dev. Bias Std.Dev. Bias Std.Dev.

κ 0.20 0.021 0.039 1.861×10−3 0.034 1.131×10−3 0.027

γ 0.10 0.055 0.032 1.671×10−3 0.025 1.171×10−3 0.019

ρ 0.03 0.011 0.047 1.871×10−3 0.039 1.441×10−3 0.032

σ1 0.02 1.921×10−3 0.035 1.881×10−3 0.024 1.791×10−3 0.019

σ2 0.01 2.111×10−3 0.047 1.901×10−3 0.032 1.851×10−3 0.023

Note: “Bias” refers to the mean value of θ̂− θ0 across all replications, where θ̂ is the posterior mean estimate using a flat
prior for θ and θ0 is the true parameter vector, and “Std.Dev.” denotes the standard deviation of the same quantity. The
reported results are based on 10,000 Monte Carlo replications.
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